Member-only story

如何提升 AI 学术检索的质量?

这些技巧使用前后,结果质量差距显而易见。

Shuyi Wang
12 min readOct 9, 2024

困惑

AI 能够帮助你检索资料,这你早就知道了。但从实际使用效果看,很多小伙伴并没有真正享受到 AI 检索资料的便利。甚至,还可能被 AI 「带到了沟里」,检索到过时的、错误的信息,或者错过了重要内容。从此,他们坚决抵制使用 AI 工具完成严肃任务。

AI 辅助检索,其实是有技巧的。如果你了解它们,在检索上便能做到「事半功倍」;反之,则很可能造成不必要的困扰。

学术写作中,资料检索尤其是个重要的工作环节。检索信息的质量,可能会显著影响你的作品水平。今天这篇文章,咱们就针对学术资料检索这个场景来谈谈,你该如何操作才能获得更好的检索结果。

工具

我们以 Perplexity 为例,来说明不同检索方式带来的效果差异。

Perplexity 你应该不陌生。因为我曾经 在这篇文章里给你做过介绍。简要来说,它是一款基于 AI 的搜索和问答引擎,在 2022 年推出。基于自然语言处理技术,它可以通过网络搜索结果生成答案,并且在回答中引用来源出处。

Perplexity 支持不少主流模型。如果你订阅了 Pro 模式,可以使用 GPT-4o, Claude 3.5 Sonnet,Claude 3 Opus, Sonar Large 和 Sonar Huge 等。其中 Sonar Huge 是基于 Llama 3.1 405B 大模型。

除了对话之外,Perplexity 还支持绘图 — — Stable Diffusion XL, DALL-E 3, 甚至是 FLUX 都支持。

顺便说一句,最近我不少文章的题图和 视频的封面,都是用 FLUX 做的。这款模型生成画面(例如机器人)的一致性特别高。

--

--

Shuyi Wang
Shuyi Wang

Written by Shuyi Wang

PhD in Information Science. Associate Professor at Tianjin Normal University. Former Adjunct Faculty at UNT. First Prize Winner of HackNTX 2018.

No responses yet