Member-only story
如何提升 AI 学术检索的质量?
这些技巧使用前后,结果质量差距显而易见。
困惑
AI 能够帮助你检索资料,这你早就知道了。但从实际使用效果看,很多小伙伴并没有真正享受到 AI 检索资料的便利。甚至,还可能被 AI 「带到了沟里」,检索到过时的、错误的信息,或者错过了重要内容。从此,他们坚决抵制使用 AI 工具完成严肃任务。
AI 辅助检索,其实是有技巧的。如果你了解它们,在检索上便能做到「事半功倍」;反之,则很可能造成不必要的困扰。
学术写作中,资料检索尤其是个重要的工作环节。检索信息的质量,可能会显著影响你的作品水平。今天这篇文章,咱们就针对学术资料检索这个场景来谈谈,你该如何操作才能获得更好的检索结果。
工具
我们以 Perplexity 为例,来说明不同检索方式带来的效果差异。
Perplexity 你应该不陌生。因为我曾经 在这篇文章里给你做过介绍。简要来说,它是一款基于 AI 的搜索和问答引擎,在 2022 年推出。基于自然语言处理技术,它可以通过网络搜索结果生成答案,并且在回答中引用来源出处。
Perplexity 支持不少主流模型。如果你订阅了 Pro 模式,可以使用 GPT-4o, Claude 3.5 Sonnet,Claude 3 Opus, Sonar Large 和 Sonar Huge 等。其中 Sonar Huge 是基于 Llama 3.1 405B 大模型。
除了对话之外,Perplexity 还支持绘图 — — Stable Diffusion XL, DALL-E 3, 甚至是 FLUX 都支持。
顺便说一句,最近我不少文章的题图和 视频的封面,都是用 FLUX 做的。这款模型生成画面(例如机器人)的一致性特别高。