Member-only story

如何有效沟通你的机器学习结果?

Shuyi Wang
Oct 1, 2021

--

多问自己一个 “那又怎样?”,会很有用。

Photo by Headway on Unsplash

疑问

7 月初,我赴南京参会。 James Hendler 教授的演讲非常精彩。

其中一个片段,让我印象深刻。

他说,许多人跑模型,跑出来一个比别人都高的准确率,于是就觉得任务完成了。他自己做健康信息研究,通过各种特征判定病人是否需要住院治疗。很容易就可以构建一个模型,获得很好的分类效果。

但是,这其实远远不够。因为别人(例如他的医生客户们)非常可能会问出一个问题 “so what?” (意即 “那又怎样?”)

我听了深以为然。

因为模型准确率再高,有时也免不了会有运气的成分。能否在实际应用中发挥作用,并不能单单靠着一个数字来说明。

医生们都有自己作为专业人士的骄傲。如果计算机模型不能从理据上说服他们,那肯定是不会加以采纳的。同时,他们对于病患的健康和生命安全,也有足够重大的责任,因此无法简单接受机器模型的结果,而不加以自己的理解与思考。

对于机器学习模型研究的这种批评,之前我也听到一些。但是不少人仅仅是批评,却没有给出有效的解决方法。

该怎么办呢?Hendler 教授的解决办法,是给医生展示一些统计图表。例如描述年龄与二次入院关系的散点图。

我听了大为惊诧,提问环节第一个就把话筒抢了过来,问:

这种图形,属于描述统计。难道不应该是正式进行模型训练之前,就做了的吗?如果把它作为沟通模型的结果,那还做什么机器学习呢?

解释

Hendler 教授耐心地给我解答了这个问题。

--

--

Shuyi Wang
Shuyi Wang

Written by Shuyi Wang

PhD in Information Science. Associate Professor at Tianjin Normal University. Former Adjunct Faculty at UNT. First Prize Winner of HackNTX 2018.

No responses yet