Member-only story

文科生如何理解循环神经网络(RNN)?

Shuyi Wang
Oct 2, 2021

--

这一份视频教程中,我会用简明的例子和手绘图,为你讲解循环神经网络(Recurrent Neural Network, RNN)的原理和使用方法。

关于深度学习,我已经为你讲解了不少内容了。

咱们简单回顾一下。常见的深度学习任务,面对的数据类型主要是三类:

第一类,是结构化数据,也就是样本和属性组成的表格。例如《如何用 Python 和深度神经网络锁定即将流失的客户?》一文中,我们用到的表格:

这种数据格式,最为简单。你也很容易理解深度神经网络的结构和处理方法。

第二类,是图像数据。《如何用 Python 和 fast.ai 做图像深度迁移学习?》一文中,我给你详细介绍过如何用卷积神经网络来处理它。

第三类,是序列数据,例如文本。《如何用 Python 和深度迁移学习做文本分类?》一文里面,咱们已经展示了如何使用 fast.ai 提供的语言模型对其进行处理。

其中,图像和序列数据,处理起来更需要你对深度神经网络结构的理解。

作为文科生,你在学习卷积神经网络和循环神经网络的时候,可能会遇到一些问题。因为它们大多采用比较复杂的结构图和公式进行描述。

当然,你看到了,即便你对于循环神经网络不了解,把它当成一个黑箱,你依然可以用高阶的深度学习框架,例如 fast.ai ,执行自然语言处理任务,而且效果还很突出。

--

--

Shuyi Wang
Shuyi Wang

Written by Shuyi Wang

PhD in Information Science. Associate Professor at Tianjin Normal University. Former Adjunct Faculty at UNT. First Prize Winner of HackNTX 2018.

No responses yet