Member-only story

笔记本上就能跑的 LLM 好使吗?GPT4ALL 体验

是骡子是马,牵出来遛遛

Shuyi Wang
18 min readApr 7, 2023

正名

看到这个标题,你可能会觉得是噱头。谁不知道 ChatGPT 模型有 1750 亿以上的参数,别说是在笔记本电脑上跑,就是使用高性能 GPU 的台式机,也无法带得动啊。老老实实调用 API 不好吗?

其实,LLM(大语言模型)有非常宽泛的参数量范围。咱们今天介绍的这个模型 GPT4All 只有 70 亿参数,在 LLM 里面现在算是妥妥的小巧玲珑。不过看这个名字你也能发现,它确实是野心勃勃,照着 ChatGPT 的性能去对标的。GPT4All 基于 Meta 的 LLaMa 模型训练。你可能立即觉得不对,你这跟 GPT 有啥关系?为什么要无端蹭热度?且慢,GPT4All 确实和 ChatGPT 有关 — — 它用来微调的训练数据,正是调用 ChatGPT 产生的大量问答内容。

我怕你对技术细节不感兴趣,因此只用下面这张图来说明 GPT4All 的训练过程。

(图片来源:我让 ChatGPT 自己查了资料后调用 graphviz 画的)

GPT4All 其实就是非常典型的蒸馏(distill)模型 — — 想要模型尽量靠近大模型的性能,又要参数足够少。听起来很贪心,是吧?

据开发者自己说,GPT4All 虽小,却在某些任务类型上可以和 ChatGPT 相媲美。但是,咱们不能只听开发者的一面之辞。还是试试看比较好,你说是吧?

下载

说明一下,目前你可以找到的蒸馏模型,绝不只是 GPT4All 一个。但是对比下来,在相似的宣称能力情况下,GPT4All 对于电脑要求还算是稍微低一些。至少你不需要专业级别的 GPU,或者 60GB 的内存容量。

这是 GPT4All 的 Github 项目页面。GPT4All 推出时间不长,却已经超过 20000 颗星了。

--

--

Shuyi Wang
Shuyi Wang

Written by Shuyi Wang

PhD in Information Science. Associate Professor at Tianjin Normal University. Former Adjunct Faculty at UNT. First Prize Winner of HackNTX 2018.

Responses (1)